楼主 
                   
                 
                    
          
      
         
           
           
        
         
           
           
          噎住   
           
           
           
           
          
发表于 2019-4-2 06:24:42  
              | 栏目:
书籍推荐  
              
           
              
               
          
           
           
          
           
           
           
          | 
           
          
           
          
           
         
       
     
    
        
     
       
            
       
       
      
       
      
      
 
           
                 
书籍名称   :《Physical Chemistry for the Biological Sciences》2nd Edition    
编著人员 : Gordon G. Hammes, Sharon Hammes-Schiffer   
出版单位 : 隐藏内容  
出版时间 : 2015  
涉及领域: 医药书籍 » 生命科学书籍  
推荐等级: ★★★    
                  
               
                
               
            
            
         
                   
 《Physical Chemistry for the Biological Sciences》2nd Edition 
This book provides an introduction to physical chemistry that is directed toward applications to the biological sciences. Advanced mathematics is not required. This book can be used for either a one semester or two semester course, and as a reference volume by students and faculty in the biological sciences.  
 
 
 
TABLE OF CONTENTS 
Preface to First Edition xv 
 
Preface to Second Edition xvii 
 
THERMODYNAMICS 1 
 
1. Heat, Work, and Energy 3 
 
1.1 Introduction 3 
 
1.2 Temperature 4 
 
1.3 Heat 5 
 
1.4 Work 6 
 
1.5 Definition of Energy 9 
 
1.6 Enthalpy 11 
 
1.7 Standard States 12 
 
1.8 Calorimetry 13 
 
1.9 Reaction Enthalpies 16 
 
1.10 Temperature Dependence of the Reaction Enthalpy 18 
 
References 19 
 
Problems 20 
 
2. Entropy and Gibbs Energy 23 
 
2.1 Introduction 23 
 
2.2 Statement of the Second Law 24 
 
2.3 Calculation of the Entropy 26 
 
2.4 Third Law of Thermodynamics 28 
 
2.5 Molecular Interpretation of Entropy 29 
 
2.6 Gibbs Energy 30 
 
2.7 Chemical Equilibria 32 
 
2.8 Pressure and Temperature Dependence of the Gibbs Energy 35 
 
2.9 Phase Changes 36 
 
2.10 Additions to the Gibbs Energy 39 
 
Problems 40 
 
3. Applications of Thermodynamics to Biological Systems 43 
 
3.1 Biochemical Reactions 43 
 
3.2 Metabolic Cycles 45 
 
3.3 Direct Synthesis of ATP 49 
 
3.4 Establishment of Membrane Ion Gradients by Chemical Reactions 51 
 
3.5 Protein Structure 52 
 
3.6 Protein Folding 60 
 
3.7 Nucleic Acid Structures 63 
 
3.8 DNA Melting 67 
 
3.9 RNA 71 
 
References 72 
 
Problems 73 
 
4. Thermodynamics Revisited 77 
 
4.1 Introduction 77 
 
4.2 Mathematical Tools 77 
 
4.3 Maxwell Relations 78 
 
4.4 Chemical Potential 80 
 
4.5 Partial Molar Quantities 83 
 
4.6 Osmotic Pressure 85 
 
4.7 Chemical Equilibria 87 
 
4.8 Ionic Solutions 89 
 
References 93 
 
Problems 93 
 
CHEMICAL KINETICS 95 
 
5. Principles of Chemical Kinetics 97 
 
5.1 Introduction 97 
 
5.2 Reaction Rates 99 
 
5.3 Determination of Rate Laws 101 
 
5.4 Radioactive Decay 104 
 
5.5 Reaction Mechanisms 105 
 
5.6 Temperature Dependence of Rate Constants 108 
 
5.7 Relationship Between Thermodynamics and Kinetics 112 
 
5.8 Reaction Rates Near Equilibrium 114 
 
5.9 Single Molecule Kinetics 116 
 
References 118 
 
Problems 118 
 
6. Applications of Kinetics to Biological Systems 121 
 
6.1 Introduction 121 
 
6.2 Enzyme Catalysis: The Michaelis–Menten Mechanism 121 
 
6.3 α-Chymotrypsin 126 
 
6.4 Protein Tyrosine Phosphatase 133 
 
6.5 Ribozymes 137 
 
6.6 DNA Melting and Renaturation 142 
 
References 148 
 
Problems 149 
 
QUANTUM MECHANICS 153 
 
7. Fundamentals of Quantum Mechanics 155 
 
7.1 Introduction 155 
 
7.2 Schrödinger Equation 158 
 
7.3 Particle in a Box 159 
 
7.4 Vibrational Motions 162 
 
7.5 Tunneling 165 
 
7.6 Rotational Motions 167 
 
7.7 Basics of Spectroscopy 169 
 
References 173 
 
Problems 174 
 
8. Electronic Structure of Atoms and Molecules 177 
 
8.1 Introduction 177 
 
8.2 Hydrogenic Atoms 177 
 
8.3 Many-Electron Atoms 181 
 
8.4 Born–Oppenheimer Approximation 184 
 
8.5 Molecular Orbital Theory 186 
 
8.6 Hartree–Fock Theory and Beyond 190 
 
8.7 Density Functional Theory 193 
 
8.8 Quantum Chemistry of Biological Systems 194 
 
References 200 
 
Problems 201 
 
SPECTROSCOPY 203 
 
9. X-ray Crystallography 205 
 
9.1 Introduction 205 
 
9.2 Scattering of X-Rays by a Crystal 206 
 
9.3 Structure Determination 208 
 
9.4 Neutron Diffraction 212 
 
9.5 Nucleic Acid Structure 213 
 
9.6 Protein Structure 216 
 
9.7 Enzyme Catalysis 219 
 
References 222 
 
Problems 223 
 
10. Electronic Spectra 225 
 
10.1 Introduction 225 
 
10.2 Absorption Spectra 226 
 
10.3 Ultraviolet Spectra of Proteins 228 
 
10.4 Nucleic Acid Spectra 230 
 
10.5 Prosthetic Groups 231 
 
10.6 Difference Spectroscopy 233 
 
10.7 X-Ray Absorption Spectroscopy 236 
 
10.8 Fluorescence and Phosphorescence 236 
 
10.9 RecBCD: Helicase Activity Monitored by Fluorescence 240 
 
10.10 Fluorescence Energy Transfer: A Molecular Ruler 241 
 
10.11 Application of Energy Transfer to Biological Systems 243 
 
10.12 Dihydrofolate Reductase 245 
 
References 247 
 
Problems 248 
 
11. Circular Dichroism, Optical Rotary Dispersion, and Fluorescence Polarization 253 
 
11.1 Introduction 253 
 
11.2 Optical Rotary Dispersion 254 
 
11.3 Circular Dichroism 256 
 
11.4 Optical Rotary Dispersion and Circular Dichroism of Proteins 257 
 
11.5 Optical Rotation and Circular Dichroism of Nucleic Acids 259 
 
11.6 Small Molecule Binding to DNA 260 
 
11.7 Protein Folding 263 
 
11.8 Interaction of DNA with Zinc Finger Proteins 266 
 
11.9 Fluorescence Polarization 267 
 
11.10 Integration of HIV Genome Into Host Genome 269 
 
11.11 α-Ketoglutarate Dehydrogenase 270 
 
References 272 
 
Problems 273 
 
12. Vibrations in Macromolecules 277 
 
12.1 Introduction 277 
 
12.2 Infrared Spectroscopy 278 
 
12.3 Raman Spectroscopy 279 
 
12.4 Structure Determination with Vibrational Spectroscopy 281 
 
12.5 Resonance Raman Spectroscopy 283 
 
12.6 Structure of Enzyme–Substrate Complexes 286 
 
12.7 Conclusion 287 
 
References 287 
 
Problems 288 
 
13. Principles of Nuclear Magnetic Resonance and Electron Spin Resonance 289 
 
13.1 Introduction 289 
 
13.2 NMR Spectrometers 292 
 
13.3 Chemical Shifts 293 
 
13.4 Spin–Spin Splitting 296 
 
13.5 Relaxation Times 298 
 
13.6 Multidimensional NMR 300 
 
13.7 Magnetic Resonance Imaging 306 
 
13.8 Electron Spin Resonance 306 
 
References 310 
 
Problems 310 
 
14. Applications of Magnetic Resonance to Biology 315 
 
14.1 Introduction 315 
 
14.2 Regulation of DNA Transcription 315 
 
14.3 Protein–DNA Interactions 318 
 
14.4 Dynamics of Protein Folding 320 
 
14.5 RNA Folding 322 
 
14.6 Lactose Permease 325 
 
14.7 Proteasome Structure and Function 328 
 
14.8 Conclusion 329 
 
References 329 
 
STATISTICAL MECHANICS 331 
 
15. Fundamentals of Statistical Mechanics 333 
 
15.1 Introduction 333 
 
15.2 Kinetic Model of Gases 333 
 
15.3 Boltzmann Distribution 338 
 
15.4 Molecular Partition Function 343 
 
15.5 Ensembles 346 
 
15.6 Statistical Entropy 349 
 
15.7 Helix-Coil Transition 350 
 
References 353 
 
Problems 354 
 
16. Molecular Simulations 357 
 
16.1 Introduction 357 
 
16.2 Potential Energy Surfaces 358 
 
16.3 Molecular Mechanics and Docking 364 
 
16.4 Large-Scale Simulations 365 
 
16.5 Molecular Dynamics 367 
 
16.6 Monte Carlo 373 
 
16.7 Hybrid Quantum/Classical Methods 373 
 
16.8 Helmholtz and Gibbs Energy Calculations 375 
 
16.9 Simulations of Enzyme Reactions 376 
 
References 379 
 
Problems 379 
 
SPECIAL TOPICS 383 
 
17. Ligand Binding to Macromolecules 385 
 
17.1 Introduction 385 
 
17.2 Binding of Small Molecules to Multiple Identical Binding Sites 385 
 
17.3 Macroscopic and Microscopic Equilibrium Constants 387 
 
17.4 Statistical Effects in Ligand Binding to Macromolecules 389 
 
17.5 Experimental Determination of Ligand Binding Isotherms 392 
 
17.6 Binding of Cro Repressor Protein to DNA 395 
 
17.7 Cooperativity in Ligand Binding 397 
 
17.8 Models for Cooperativity 402 
 
17.9 Kinetic Studies of Cooperative Binding 406 
 
17.10 Allosterism 408 
 
References 412 
 
Problems 412 
 
18. Hydrodynamics of Macromolecules 415 
 
18.1 Introduction 415 
 
18.2 Frictional Coefficient 415 
 
18.3 Diffusion 418 
 
18.4 Centrifugation 421 
 
18.5 Velocity Sedimentation 422 
 
18.6 Equilibrium Centrifugation 424 
 
18.7 Preparative Centrifugation 425 
 
18.8 Density Centrifugation 427 
 
18.9 Viscosity 428 
 
18.10 Electrophoresis 429 
 
18.11 Peptide-Induced Conformational Change of a Major Histocompatibility Complex Protein 432 
 
18.12 Ultracentrifuge Analysis of Protein–DNA Interactions 434 
 
References 435 
 
Problems 435 
 
19. Mass Spectrometry 441 
 
19.1 Introduction 441 
 
19.2 Mass Analysis 441 
 
19.3 Tandem Mass Spectrometry (MS/MS) 445 
 
19.4 Ion Detectors 445 
 
19.5 Ionization of the Sample 446 
 
19.6 Sample Preparation/Analysis 449 
 
19.7 Proteins and Peptides 450 
 
19.8 Protein Folding 452 
 
19.9 Other Biomolecules 455 
 
References 455 
 
Problems 456 
 
APPENDICES 457 
 
Appendix 1. Useful Constants and Conversion Factors 459 
 
Appendix 2. Structures of the Common Amino Acids at Neutral pH 461 
 
Appendix 3. Common Nucleic Acid Components 463 
 
Appendix 4. Standard Gibbs Energies and Enthalpies of Formation at 298 K, 1 atm, pH 7, and 0.25 M Ionic Strength 465 
 
Appendix 5. Standard Gibbs Energy and Enthalpy Changes for Biochemical Reactions at 298 K, 1 atm, pH 7.0, pMg 3.0, and 0.25M Ionic Strength 467 
 
Appendix 6. Introduction to Electrochemistry 469 
 
A6-1 Introduction 469 
 
A6-2 Galvanic Cells 469 
 
A6-3 Standard Electrochmical Potentials 471 
 
A6-4 Concentration Dependence of the Electrochemical Potential 472 
 
A6-5 Biochemical Redox Reactions 473 
 
References 473 
 
Index 475
 
 
 
 
 
 
 
 
      
     
    
     
    
     
     
    
        
     
      
      说明:本站所有资源仅供学习与参考,请勿用于商业用途,否则产生的一切后果将由您自己承担!如有侵犯您的版权,请及时联系我们,我们将尽快处理。 
       
      
     
    
    
    
     
    
     
    
        
     
        发帖前要善用【论坛搜索 】功能,以免资源重复发布;
如果吧里没有您要寻找的资源,请在【求资源 】版面发帖求助,得到应助请及时结帖;
如何回报帮助你的吧友,一个好办法就是给对方【顶帖】,顶帖不加分不扣分,但可以让对方的帖子靠前让更多的人看到!